使用GDAL进行影像投影坐标、地理坐标、图上坐标的转换

GIS 同时被 2 个专栏收录
69 篇文章 4 订阅
48 篇文章 0 订阅

我使用GDAL库写了四个函数分别进行投影坐标与地理坐标(经纬度)之间的转换,投影坐标和图上坐标(行列号)之间的转换。有需要的朋友可以参考。
直接上代码吧,因为代码很简单(Python版本)。

# -*- encoding: utf-8 -*-

from osgeo import gdal
from osgeo import osr
import numpy as np

def getSRSPair(dataset):
    '''
    获得给定数据的投影参考系和地理参考系
    :param dataset: GDAL地理数据
    :return: 投影参考系和地理参考系
    '''
    prosrs = osr.SpatialReference()
    prosrs.ImportFromWkt(dataset.GetProjection())
    geosrs = prosrs.CloneGeogCS()
    return prosrs, geosrs

def geo2lonlat(dataset, x, y):
    '''
    将投影坐标转为经纬度坐标(具体的投影坐标系由给定数据确定)
    :param dataset: GDAL地理数据
    :param x: 投影坐标x
    :param y: 投影坐标y
    :return: 投影坐标(x, y)对应的经纬度坐标(lon, lat)
    '''
    prosrs, geosrs = getSRSPair(dataset)
    ct = osr.CoordinateTransformation(prosrs, geosrs)
    coords = ct.TransformPoint(x, y)
    return coords[:2]


def lonlat2geo(dataset, lon, lat):
    '''
    将经纬度坐标转为投影坐标(具体的投影坐标系由给定数据确定)
    :param dataset: GDAL地理数据
    :param lon: 地理坐标lon经度
    :param lat: 地理坐标lat纬度
    :return: 经纬度坐标(lon, lat)对应的投影坐标
    '''
    prosrs, geosrs = getSRSPair(dataset)
    ct = osr.CoordinateTransformation(geosrs, prosrs)
    coords = ct.TransformPoint(lon, lat)
    return coords[:2]

def imagexy2geo(dataset, row, col):
    '''
    根据GDAL的六参数模型将影像图上坐标(行列号)转为投影坐标或地理坐标(根据具体数据的坐标系统转换)
    :param dataset: GDAL地理数据
    :param row: 像素的行号
    :param col: 像素的列号
    :return: 行列号(row, col)对应的投影坐标或地理坐标(x, y)
    '''
    trans = dataset.GetGeoTransform()
    px = trans[0] + col * trans[1] + row * trans[2]
    py = trans[3] + col * trans[4] + row * trans[5]
    return px, py


def geo2imagexy(dataset, x, y):
    '''
    根据GDAL的六 参数模型将给定的投影或地理坐标转为影像图上坐标(行列号)
    :param dataset: GDAL地理数据
    :param x: 投影或地理坐标x
    :param y: 投影或地理坐标y
    :return: 影坐标或地理坐标(x, y)对应的影像图上行列号(row, col)
    '''
    trans = dataset.GetGeoTransform()
    a = np.array([[trans[1], trans[2]], [trans[4], trans[5]]])
    b = np.array([x - trans[0], y - trans[3]])
    return np.linalg.solve(a, b)  # 使用numpy的linalg.solve进行二元一次方程的求解


if __name__ == '__main__':
    gdal.AllRegister()
    dataset = gdal.Open(r"F:\2016\Data\Great Khingan\DEM\Projection\strm_6102_UTM.tif")
    print('数据投影:')
    print(dataset.GetProjection())
    print('数据的大小(行,列):')
    print('(%s %s)' % (dataset.RasterYSize, dataset.RasterXSize))

    x = 464201
    y = 5818760
    lon = 122.47242
    lat = 52.51778
    row = 2399
    col = 3751

    print('投影坐标 -> 经纬度:')
    coords = geo2lonlat(dataset, x, y)
    print('(%s, %s)->(%s, %s)' % (x, y, coords[0], coords[1]))
    print('经纬度 -> 投影坐标:')
    coords = lonlat2geo(dataset, lon, lat)
    print('(%s, %s)->(%s, %s)' % (lon, lat, coords[0], coords[1]))

    print('图上坐标 -> 投影坐标:')
    coords = imagexy2geo(dataset, row, col)
    print('(%s, %s)->(%s, %s)' % (row, col, coords[0], coords[1]))
    print('投影坐标 -> 图上坐标:')
    coords = geo2imagexy(dataset, x, y)
    print('(%s, %s)->(%s, %s)' % (x, y, coords[0], coords[1]))

输出结果:

数据投影:
PROJCS["WGS_1984_UTM_Zone_51N",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433],AUTHORITY["EPSG","4326"]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",123],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",0],UNIT["metre",1,AUTHORITY["EPSG","9001"]],AUTHORITY["EPSG","32651"]]
数据的大小(行,列):
(7503 4799)
投影坐标 -> 经纬度:
(464201, 5818760)->(122.472422555, 52.5177753994)
经纬度 -> 投影坐标:
(122.47242, 52.51778)->(464200.830381, 5818760.513)
图上坐标 -> 投影坐标:
(2399, 3751)->(464163.754715, 5818797.73095)
投影坐标 -> 图上坐标:
(464201, 5818760)->(2399.49875769, 3751.50526134)

注:关于投影坐标和图上坐标转换的六参数模型可以参考我的另外一篇博文:经纬度坐标和投影坐标的转换,其实质就是一个仿射变换。

我们可以使用GDAL库自带的命令行工具(gdallocationinfo)进行检测:
gdallocationinfo

其中参数-geoloc表示的后面给定坐标是投影坐标,-wgs84表示是WGS84参考系下的地理坐标(经纬度)。其输出是对应的图上坐标(行列号)。
具体参数可以使用gdallocationinfo –help查看。

打赏
文章很值,打赏犒劳作者一下
相关推荐
©️2020 CSDN 皮肤主题: 成长之路 设计师:Amelia_0503 返回首页

打赏

卡尔曼和玻尔兹曼谁曼

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值